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We present exact calculations of reliability polynomials R(G, p) for lattice strips
G of fixed widths Ly [ 4 and arbitrarily great length Lx with various boundary
conditions. We introduce the notion of a reliability per vertex, r({G}, p)=
lim |V|Q. R(G, p)1/|V| where |V| denotes the number of vertices in G and {G}
denotes the formal limit lim |V|Q. G. We calculate this exactly for various
families of graphs. We also study the zeros of R(G, p) in the complex p plane
and determine exactly the asymptotic accumulation set of these zeros B, across
which r({G}) is nonanalytic.
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1. INTRODUCTION

With the development of progressively larger communications networks
such as those involving telecommunications and those connecting compu-
ters, from large local area networks to the internet, the analysis of the
reliability of these networks has become an increasingly important area of
study. Because many types of failures of communication links are random,
this study falls within the area of statistical physics, as well as engineering
and, as will be evident, mathematical graph theory. A common approach
to this study is to factorize the reliability into a factor describing the com-
ponents such as message routers and computers at various nodes, on the



one hand, and the links between these nodes, on the other hand. One often
assumes that nodal network elements like message routers and computers
have a certain probability pnode of (normal) operation. Since failures of
these nodal components generally occur independently, the factor in the
overall reliability due to these elements is then pnnode, where n is the number
of nodes in the network. The other factor contributing to the overall
network reliability involves the connecting links on the network and hence
the connectivity structure of the network. As mentioned above, many
failures in these connecting links are also random and independent and
may thus be treated in a probabilistic manner in which one describes a
given link as having a probability p of operating and thus a probability
1−p of failing. (Examples of nonrandom failures include earthquakes that
affect only one portion of a network; these are not considered here.) The
network is thus represented as a connected graph G=(V, E) with vertex
(=node) set V and edge (=bond) set E, in which each vertex represents
either a message router or switch or an endpoint such as a computer or
terminal (or telephone in the telecommunications example) and each edge
represents the link between the nodes. We shall be interested here in a
commonly used simplified model of the network in which each nodal
element and link have, respectively, the same fixed probabilities pnode and p
of operation with pnode and p lying in the interval [0, 1]. We shall denote
the number of vertices and edges in G as |V|=n and |E|. In the graphical
representation of the network, one regards a normally operating commu-
nications link as an edge that is present (with probability p), and a mal-
functioning communications link as an edge that is absent (with probability
1−p), the presence or absence being random and uncorrelated. Defining a
successfully operating network as one in which all of links and nodes are
operating normally, it follows that the node reliability is, as noted above,
p |V|node, independent of the connectivity of the network. The factor due to the
operation of the links is much more difficult to calculate. It is therefore
customary, in modelling the reliability behavior of networks, to separate
out the node-reliability factor and concentrate on the contribution due to
the structure of the network.

The all-terminal reliability polynomial R(G, p) is defined as the prob-
ability that there is an operating communications link between any two
nodes in the network, i.e., any two vertices in the set V are connected (by a
path consisting of edges that are present). (1–5) In passing, we note that one
can also study k-terminal reliability probability polynomials, but we shall
restrict ourselves here to the all-terminal reliability polynomial and hence
shall henceforth omit the qualifier ‘‘all-terminal’’ in the notation. The con-
tributions to R(G, p) arise from the sum of connected spanning subgraphs
of G. Here a spanning subgraph is a subgraph G −=(V, E −) with E − ı E,
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i.e., a graph with the same vertex set and a subset of the edge set of G.
Denote a connected spanning subgraph as H=(V, EH). Each contribution
to R(G, p) is weighted by a factor p |EH| reflecting the probability that the
|EH | edges are present, multiplied by a factor (1−p) |E|− |EH| reflecting the
probability that the edges in the complement set {e ¥ E; e ¨ EH}, of cardi-
nality |E|− |EH |, are absent. That is,

R(G, p)= C
H ı G

p |EH|(1−p) |E|− |EH|. (1.1)

Some pioneering studies of network reliability include refs. 1–4; a review is
ref. 5. The calculation of R(G, p) for an arbitrary (connected) graph G has
been proved to be #-P complete; (5, 6) that is, roughly speaking, for a generic
network G, the time required to calculate R(G, p) grows exponentially with
the size of the network. In the face of this difficulty, network designers
have often relied upon upper and lower bounds on R(G, p). (7–13) It is clearly
of interest if one can obtain exact solutions for R(G, p) for some families of
graphs G.

In this paper, we shall present a number of such exact solutions for
reliability polynomials, for recursive families of graphs G. We have pre-
viously presented such solutions for a specific recursive family of graphs in
ref. 14. A recursive family of graphs is one in which one constructs succes-
sive members of the family in a recursive manner starting from an initial
member. Recursive families of graphs that are of particular interest here
are strips of regular lattices of a given width Ly vertices and arbitrarily
great length Lx vertices with some specified transverse and longitudinal
boundary conditions. We shall envision these strips as extending in the
horizontal (=longitudinal, x) direction and having transverse extent in the
vertical, y, direction. To see that these form recursive families, one can
picture a strip, say of the square lattice, of length Lx and width Ly as being
formed by gluing on a column of squares of height Ly to the strip of length
Lx−1. The boundary conditions that we shall consider include free (FBC),
periodic (PBC), and twisted periodic (TPBC), by which is meant that the
longitudinal ends are identified with a reversal of orientation. We shall
denote the various combinations as (i) (FBCy, FBCx)=free, (ii) (FBCy,
PBCx)=cyclic, (iii) (FBCy, TPBCx)=Möbius, (iv) (PBCy, FBCx)=
cylindrical, (v) (PBCy, PBCx)=torus, and (vi) (PBCy, TPBCx)=Klein
bottle. For an arbitrary graph G, one defines the degree di of a vertex vi as
the number of edges connected to it. One then defines the maximum degree
as D=maxvi ¥ V di. A D-regular graph is one in which all of the vertices
have the same degree D. Some strip graphs, such as those with toroidal or
Klein bottle boundary conditions, are D-regular graphs. For strip graphs
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that are not D-regular, it will still be useful to define an average or effective
vertex degree in the limit of infinite length, namely

deff= lim
|V|Q.

2 |E|
|V|
. (1.2)

Secondly, we shall introduce a definition of the reliability per node in the
limit of many nodes,

r({G}, p)= lim
|V|Q.

R(G, p)1/|V| (1.3)

where {G} denotes the formal limit of a given family, lim |V|Q. G. We cal-
culate this function exactly for a number of families and study its proper-
ties. As we shall show, this function provides a convenient quantitative
measure of the reliability properties of large networks.

A third part of our work involves the calculation of the zeros of
R(G, p) in the complex p plane and the determination of their asymptotic
continuous accumulation set, denoted B as the number of vertices |V|Q.
(in practice, for our strips, this is equivalent to the limit of infinite length,
Lx Q.). As we shall show, the function r({G}) is nonanalytic across the
locus B. We define pc as the maximal point where B intersects (or coinci-
des with) the real axis. For the infinite-length limits of some lattice strips,
the locus B does not cross the real axis, so no pc is defined. In certain of
these cases, there are complex-conjugate arcs on B whose endpoints at
pend, p

g
end are very close to the real axis; in these cases, it is useful to define a

(pc)eff=Re(pend). Although the width Ly Q. limit of loci B for the infi-
nite-length lattice strips is not necessarily the same as the continuous
accumulation locus of the zeros of the reliability polynomial for the two-
dimensional thermodynamic limit Lx Q., Ly Q. with Ly/Lx fixed to a
finite nonzero constant, our exact results on infinite-length limits of lattice
strip graphs can give some insight into plausible behavior of the locus B

for the thermodynamic limits of the corresponding 2D lattices. We shall
discuss this further below.

There are several motivations for our study. Clearly, new exact cal-
culations of reliability polynomials are of interest from the point of view of
both the statistical physics of network theory and of mathematical graph
theory. The generalization of p from the interval p ¥ [0, 1] to p ¥ C is
clearly necessary in order to analyze the zeros of the reliability polynomial
and their accumulation set as |V|Q.. Our results also further illuminate
the fascinating variety of applications of the Tutte polynomial, or equiva-
lently, the Potts model partition function. Our focus here is thus somewhat
more abstract than in a specific engineering context, where one is trying to
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design the most reliable network subject to various constraints, such as
cost.

2. SOME GENERAL PROPERTIES OF THE RELIABILITY

POLYNOMIAL

In this section we review some general properties of the reliability
polynomial that will be used in the rest of the paper. As is evident from its
definition, the reliability polynomial has the properties that

R(G, 0)=0, R(G, 1)=1, (2.1)

if p ¥ [0, 1], then R(G, p) ¥ [0, 1] (2.2)

and

dR(G, p)
dp

\ 0 for p ¥ [0, 1]. (2.3)

In general, an edge can be classified as (i) a loop, i.e., an edge that
connects a vertex to itself, (ii) a bridge (=co-loop) with the property that
if it is deleted, this increases the number of connected components of the
graph by one (so that, if G is connected, deleting the bridge breaks G into
two disjoint parts), or (iii) neither a loop nor a bridge. We shall use the
standard mathematical notation that G/e means the graph obtained by
deleting e and identifying the two vertices that were connected by e (called
contracting G on e) and G−e means the graph obtained by deleting e. Now
if e is a loop, e=ea, then the probability that all terminals are connected
with each other is independent of ea, so

R(G, p)=R(G/ea, p). (2.4)

If e=eb is a bridge, then the probability that it is present is an overall
multiplicative factor in R, so

R(G, p)=pR(G/eb, p). (2.5)

If e is neither a loop nor a bridge, then R(G, p) satisfies the deletion-con-
traction relation

R(G, p)=(1−p) R(G−e, p)+pR(G/e, p). (2.6)

That is, if the edge e is not present, then R(G, p) has the value given by the
reliability polynomial of a graph G−e times the factor (1−p); if the edge is
present, then R(G, p) has the same value as the reliability polynomial of a
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graph contracted on e, multiplied by p, and since these two possibilities
(e not present or present) are mutually exclusive and exhaust the possibili-
ties, the full polynomial R(G, p) is the sum of these two possibilities.

We next comment on some general properties of our r({G}, p) func-
tion. We recall that a tree graph Tn is a connected graph with n vertices
and no circuits. Since R(Tn, p)=pn−1, it follows that r({T}, p)=p, where
{T} — limnQ. Tn. However, in general, r differs from p for network
topologies that are more complicated than that of a tree graph. The r
function can give insight into the reliability behavior of large networks.
From obvious arguments, it follows that any reliability function, whether
the k-terminal reliability function Rk(G, p) or the all-terminal reliability
RA(G, p), is a monotonically increasing function of p on the relevant
interval p ¥ [0, 1]. It follows that r({G}, p) is also a monotonically non-
decreasing function of p on this interval.

From the basic definition (1.1) one can generalize p from the physical
interval 0 [ p [ 1 to arbitrary real or, indeed, complex p. This generaliza-
tion is necessary when one calculates the zeros of R(G, p) in the complex p
plane. Using our calculations of R(G, p) for a variety of families of lattice
strip graphs, we shall determine exactly the continuous accumulation set of
the zeros of R(G, p) in the complex p plane as |V|Q. for each family of
graphs G. We shall denote this accumulation set as B. In this context we
note that in 1992 Brown and Colbourn conjectured that for an arbitrary
connected graph G, all of the zeros of the reliability polynomial R(G, p)
lie in the disk |p−1| [ 1 (15) (some related work is shown in refs. 16–18).
Recently, Royle and Sokal have reported counterexamples that show the
Brown–Colbourn conjecture to be false, (19) although the maximal values of
|p−1| found so far are only slightly greater than unity. Extending the
counterexamples found in ref. 19, we have also found several recursive
families of graphs for which the conjecture is false.

One can also address a related question for the continuous asymptotic
accumulation set B: Consider a recursive family of arbitrary connected
graphs G=G(V, E) and, as above, let B be the asymptotic accumulation
set of zeros of R(G, p) in the limit |V|Q.. Is it true that all points on B

are contained in the disk |p−1| [ 1? Clearly, although the Brown–
Colbourn conjecture is false, the answer to the above question could still be
yes since the zeros of R(G, p) that lie outside the disk |p−1| might, a priori,
not accumulate to form part of B. However, we shall show that the answer
to this question is no, i.e., we shall exhibit recursive families of graphs for
which B extends outside the disk |p−1|. Using our exact results, we shall
address a number of other interesting questions concerning B. It is also of
interest to note that Brown and Colbourn proved that all of the real roots
of the reliability polynomial lie in the set {0} 2 (1, 2]. (15)
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Since we shall present calculations for strip graphs with free and
periodic or twisted periodic longitudinal boundary conditions, we observe
the following inequality, where BCy refers to any given transverse bound-
ary condition

Theorem 2.1. For a strip graph Gs of length Lx and width Ly
vertices,

R(Gs, Ly×Lx, BCy, (T) PBCx, p) \ R(Gs, Ly×Lx, BCy, FBCx, p). (2.7)

Proof. These inequalities follow because for a given type of lattice
strip graph Gs with a given length Lx and width Ly, the strip with periodic
or twisted periodic longitudinal boundary conditions has a greater connec-
tivity than strip with free longitudinal boundary conditions. In particular,
for a given Gs, if all of the transverse edges at a fixed longitudinal location
are absent, this does not produce two disjoint graphs for a cyclic or Möbius
strip but does for the free strip. L

3. RELATIONS BETWEEN THE RELIABILITY POLYNOMIAL

AND THE TUTTE POLYNOMIAL AND POTTS MODEL

PARTITION FUNCTION

We recall that the Tutte polynomial of a graph G=(V, E) is (20–27)

T(G, x, y)= C
GŒ ı G

(x−1)k(GŒ)−k(G) (y−1)c(GŒ) (3.1)

where k(G −) and c(G −) denote the number of components and linearly
independent circuits of G −, with c(G −)=|E −|+k(G −)− |V|. Since we deal
only with connected graphs here, k(G)=1. (We follow standard notation
for the variables x and y of the Tutte polynomial and caution the reader
that these have no connection with the x (longitudinal) and y (transverse)
axes of the strip graphs.) The reliability polynomial R(G, p) can be
expressed in terms of the Tutte polynomial T(G, x, y) as (5)

R(G, p)=p |V|−1(1−p) |E|− |V|+1 T 1G, 1, 1
1−p
2 . (3.2)

We shall use this relation to calculate reliability polynomials for various
families of graphs from our previous calculations of the Tutte polynomials
for these graphs. (28–38) We have also used an iterative application of the
deletion-contraction relation (2.6) to calculate reliability polynomials
directly.
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The Tutte polynomial is equivalent to the partition function of the
Potts spin model. On a lattice, or more generally, on a graph G, at tem-
perature T, this model is defined by the partition function (39, 40)

Z(G, q, v)=C
{si}
e−bH (3.3)

with the Hamiltonian

H=−J C
OijP
dsisj (3.4)

where si=1,..., q are the spin variables on each vertex i ¥ G; b=(kBT)−1;
OijP denotes pairs of adjacent vertices; and we use the notation

K=bJ, a=eK, v=a−1. (3.5)

This partition function can be written as (41)

Z(G, q, v)= C
GŒ ı G

qk(GŒ)ve(GŒ). (3.6)

This formula enables one to generalize q from Z+ to R or, indeed, C. From
it one also directly deduces the equivalence

Z(G, q, v)=(x−1)k(G) (y−1) |V| T(G, x, y) (3.7)

where

x=1+
q
v

(3.8)

and

y=v+1=eK (3.9)

so that

q=(x−1)(y−1). (3.10)

Combining (3.2) and (3.7), we have, for a connected graph G, the relation
between the reliability polynomial and the Potts model partition function

R(G, p)=(1−p) |E| lim
qQ 0
q−1Z 1G, q, v= p

1−p
2 . (3.11)
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Note that Z(G, q, v) always has an overall factor of q, which cancels the
factor of q−1 in (3.11). The valuation y=1/(1−p) in (3.2), or equivalently,
v=p/(1−p) in (3.11) can also be expressed as

p=1−e−K=
v
1+v

. (3.12)

Thus the physical range of p ¥ [0, 1] for the network corresponds to the
physical range of temperature for the q=0 Potts ferromagnet, with T=0Z
p=1 and T=.Z p=0. The physical range of temperature for the Potts
antiferromagnet would correspond to the unphysical interval −. [ p [ 0
for the network.

4. STRUCTURAL RESULTS

4.1. General Recursive Families of Graphs

A general form for the Tutte polynomial for the strip graphs con-
sidered here, or more generally, for recursively defined families of graphs
Gm comprised of m repeated subgraph units, is (28)

T(Gm, q, v)=
1
x−1

C
NT, G, l

j=1
cG, j(lG, j)m (4.1)

where the terms lG, j, the coefficients cG, j, and the total number NZ, G, l
depend on G through the type of lattice, its width, Ly, and the boundary
conditions, but not on the length.

We observe the following general result:

Theorem 4.1. Consider a recursive family of graphs Gm comprised
of m repeated subgraph units. Then the reliability polynomial R(Gm, p) has
the general form

R(Gm, p)= C
NR, G, m

j=1
cR, G, j(mG, j)m (4.2)

where the coefficients cR, G, j and terms mG, j’s depend on G through the type
of lattice, its width, Ly, and the boundary conditions, but not on the
length.

Proof. This is proved by combining (3.2) and (4.1). Clearly, the
mG, j’s and cR, G, j’s can be determined from the lG, j’s and cG, j’s. L
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The reduction of the form (4.1) to (4.2) is analogous to the reduction
that we had found for chromatic polynomials of recursive families of
graphs. (42–50)

It is convenient to factor out a power of p and write (4.2) as

R(Gm, p)=pa1, Gm+a0, G C
NR, G, a

j=1
cR, G, j(aG, j)m (4.3)

with

aG, j=p−a1, GmG, j (4.4)

where again the ai, G, i=0, 1, depend on G through the type of lattice, its
width, Ly, and the boundary conditions, but not on the length. Obviously,
NR, G, a=NR, G, m. We find that for p=1, for all of the families that we have
considered, all except one of the NR, G, aaG, j’s vanish, and the nonzero term,
which can be taken to be the first, has the value unity:

aG, 1=1, aG, j=0, 2 [ j [NR, G, a for p=1. (4.5)

For the strips of the square and triangular lattices considered here,

a1, G=Ly, G of sq, t type (4.6)

and for the strips of the honeycomb lattice,

a1, G=2Ly, G of hc type. (4.7)

Note that for all of the strips of the square and triangular lattice with
periodic or twisted periodic longitudinal boundary conditions, m=Lx. For
the corresponding strips with free longitudinal boundary conditions, it is
convenient to set m=Lx−1; with this definition, it follows that for strips
with both free and periodic (or twisted periodic) longitudinal boundary
conditions, m is equal to length measured in units of edges, with Lx being
the length in terms of vertices. The situation with the honeycomb strips is
different. For example, for a cyclic strip of the honeycomb lattice, envi-
sioned as a brick lattice, Lx=2m; that is, if the strip is m bricks long, then
the length, measured in terms of vertices, is 2m.

Following our earlier nomenclature, (42) we denote a term aG, j in (4.3)
as leading (=dominant) if it has a magnitude greater than or equal to the
magnitude of other aG, jŒ’s. In the limit nQ. the leading aG, j in R(G, p)
determines the function r({G}, p). The continuous locus B where r({G}, p)
is nonanalytic thus occurs where there is a switching of dominant aG, j’s
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in R, respectively, and is the solution of the equation of degeneracy in
magnitude

|aG, j |=|aG, jŒ | (4.8)

between two dominant a’s.

4.2. Cyclic Strips of Regular Lattices

Here we will derive some structural properties of reliability polyno-
mials for cyclic strips of regular lattices from corresponding properties of
Tutte polynomials, using Eq. (3.2). In ref. 31 it was shown that for cyclic
and Möbius strips of the square lattice of fixed width Ly and arbitrary
length Lx (and also for cyclic strips of the triangular lattice) the coefficients
cj in the Tutte polynomial are polynomials in q with the property that for
each degree d there is a unique polynomial, denoted c (d). Further, this was
shown to be

c (d)=U2d(q1/2/2)=C
d

j=0
(−1) j 12d−j

j
2 qd−j (4.9)

where Un(x) is the Chebyshev polynomial of the second kind. A number of
properties of these coefficients were derived in ref. 31. The first few of these
coefficients are

c (0)=1, c (1)=q−1, c (2)=q2−3q+1, (4.10)

c (3)=q3−5q2+6q−1. (4.11)

Following our earlier work, (36) we define

o (d)=c (d)+c (d−1)=C
d−1

j=0
(−1) j 12d−1−j

j
2 qd−j (4.12)

and

ō (d)=q−1o (d)=C
d−1

j=0
(−1) j 12d−1−j

j
2 qd−1−j. (4.13)

An important property of o (d) is that it always has the factor q; this is
evident from (4.12). The first few of these polynomials are

o (1)=q, o (2)=q(q−2), o (3)=q(q−1)(q−3). (4.14)
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The following special results for q=0, i.e., x=1, will be useful:

lim
qQ 0
ō (d)=(−1)d+1 d (4.15)

c (d)=(−1)d for q=0 (4.16)

and

dc(d)

dq
=(−1)d−1

(d+1) d
2

for q=0 (4.17)

so that, using (3.10) to express c (d) as a function of x and y,

“c (d)

“x
=(−1)d−1 (y−1)

(d+1) d
2

for x=1. (4.18)

The terms lT, Gs, Ly, j that occur in (4.1) can be classified into sets, with
the lT, Gs, Ly, j(x, y) in the d th set being defined as those terms with coeffi-
cient c (d). In ref. 31 the numbers of such terms, denoted nT(Ly, d), were
calculated. Labelling the eigenvalues with coefficient c (d) as lT, Gs, Ly, d, j with
1 [ j [ nT(Ly, d), the Tutte polynomial for a strip graph of length Lx=m
of a regular lattice of type Gs can be written in the form

T[Gs(Ly×m; FBCy, PBCy), x, y]=
1
x−1

C
Ly

d=0
c (d) C

nT(Ly, d)

j=1
(lT, Gs, Ly, d, j)

m.
(4.19)

The property that T(G, x, y) is a polynomial in x, which is evident from its
definition (3.1), is not manifest in (4.19) because of the 1/(x−1) prefactor;
however, this prefactor is always cancelled in the evaluation of the sum on
the right-hand side of (4.19) for any particular type of lattice strip graph Gm.
Nevertheless, the presence of this prefactor means that if one calculates
the reliability polynomial for a cyclic strip graph by evaluating the Tutte
polynomial for this graph at x=1, one encounters an expression of the
form 0/0 and must use L’Hopital’s rule to evaluate it. Thus, differentiating
numerator and the denominator 1/(x−1) from the prefactor and using
Eqs. (4.16) and (4.18), we have

T[(Gs(Ly×m; FBCy, PBCy), x=1, y]

=C
Ly

d=1
(−1)d−1 (y−1)

(d+1) d
2

C
nT(Ly, d)

j=1
(lT, Gs, Ly, d, j)

m

+m C
Ly

d=0
(−1)d C

nT(Ly, d)

j=1
(lT, Gs, Ly, d, j)

m−1
“lT, Gs, Ly, d, j

“x
(4.20)
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where Gs denotes the type of lattice and the right-hand side is evaluated at
x=1. This provides one way of understanding the origin of certain factor
of m in the exact results that we shall give below for reliability polynomials
of strip graphs of length m.

The number nT(Ly, d) of l’s with a given coefficient c (d) is (28)

nT(Ly, d)=
(2d+1)
(Ly+d+1)

1 2Ly
Ly−d
2 for 0 [ d [ Ly (4.21)

and zero otherwise. The total number NT, Ly, l of different terms lT, Ly, j in
Eq. (4.1) is (31)

NT, Ly, l=C
Ly

d=0
nT(Ly, d). (4.22)

For cyclic and Möbius strips of the square, triangular, and honeycomb
lattices, we calculated this to be (31, 32)

NT, Ly, l=
12Ly
Ly
2 . (4.23)

For cyclic and Möbius strips of regular lattices Gs with arbitrary Ly,
Eq. (4.21) shows that there is a unique lT, Gs, Ly, d corresponding to the coef-
ficient c (d) of highest degree d, namely d=Ly. We have found (28, 29, 32) that
this term is

lT, Gs, Ly, d=Ly=1. (4.24)

As indicated, since this eigenvalue is unique, it is not necessary to append a
third index, as with the other l’s, and we avoid this for simplicity. For each
of the cyclic strips of regular lattices Gs considered here, one can derive a
general formula for aGs, Ly, Ly from (3.2) in conjunction with (4.24), viz.,

aGs, Ly, Ly=(1−p)
rGs (4.25)

where

rGs=
|E|− |V|
m

. (4.26)

For example, for the cyclic and Möbius strips of the square (sq) lattice
of width Ly vertices and length Lx=m vertices, |V|=Lym and |E|=
(2Ly−1) m, so that rsq=Ly−1; for the corresponding strips of the trian-
gular (t) lattice, |V| is the same and |E|=(3Ly−2) m, so that rt=2(Ly−1).
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For the cyclic strip of the honeycomb (hc) lattice of width Ly vertices and
length Lx=2m vertices, we have |V|=2Lym and |E|=(3Ly−1) m so that
rhc=Ly−1.

We next have

Theorem 4.2. Consider the reliability polynomial for cyclic strips
of the square, triangular, or honeycomb lattices, denoted generically Gs, of
width Ly and arbitrary length Lx. The total number of different terms in
(4.2) satisfies the inequality NR, Gs, Ly, a [ (1/2) NT, Gs, Ly, l and hence

NR, Gs, Ly, a [
1
2
12Ly
Ly
2 . (4.27)

Proof. The proof makes use of the expression (3.2) of the reliability
polynomial R(Gm, p) as a special case of the Tutte polynomial T(Gm, x, y)
for x=1 and y=1/(1−p), together with our earlier result (4.19) for the
Tutte polynomial of a cyclic strip graph of the square, triangular, or
honeycomb lattice. Because the prefactor 1/(x−1) in (4.19) is singular at
x=1 where one evaluates the Tutte polynomial, it is necessary that

5 C
Ly

d=0
c (d) C

nT(Ly, d)

j=1
(lT, Gs, Ly, d, j)

m6
x=1
=0. (4.28)

This vanishing condition holds for arbitrary m, which means that it implies
pairwise relations among various terms lT, Gs, Ly, d, j. The only such relations
that can yield an overall factor of (x−1) are relations of the form
lT, Gs, Ly, d, j=lT, Gs, Ly, d− a, jŒ for 1 [ d [ Ly and odd a in the range 1 [ a [ d
for a given d, since these yield expressions of the form

c (d)(lT, Gs, Ly, d, j)
m+c (d− a)(lT, Gs, Ly, d− a, jŒ)

m=(c (d)+c (d− a))(lT, Gs, Ly, d, j)
m.
(4.29)

Using (4.16), one sees that since a is odd, the combination c (d)+c(d− a)

vanishes at q=0 and hence has a factor of q. Using Eq. (3.10), one sees
that this is sufficient to get an overall factor of x−1 so as to yield the
vanishing in Eq. (4.28) at x=1 or equivalently to cancel the prefactor
1/(x−1). Because of the pairwise equalities connecting each of the l’s
when evaluated at x=1, the total number of these terms in the reliability
polynomial is reduced to half of the number for the Tutte polynomial,
Eq. (4.22). Further equalities are, in principle, possible and would further
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reduce the number of different l’s. This completes the proof of the
theorem. L

Two remarks are in order here. First, we note that in all of our cal-
culations, we find a=1; that is, the pairwise equalities among the l’s occur
for adjacent values of d. Hence, the linear combination in Eq. (4.29) is
c (d)+c (d− a)=o (d), where o (d) was given in (4.12). Second, in all of our cal-
culations, we have observed that the inequality (4.27) is realized as an
equality. Let us illustrate how the pairwise equalities work in some special
cases. For Ly=2, we have nT(2, 1)=3 and nT(2, 0)=2. At x=1, the
single lT, 2, 2 is equal to one of the three lT, 2, 1, j, which we denote lT, 2, 1, 3.
The other two of these three lT, 2, 1, j’s are equal to the two respective
lT, 2, 0, j’s: lT, 2, 1, j=lT, 2, 0, j for j=1, 2. For Ly=3, we have nT(3, 3)=1,
nT(3, 2)=5, nT(3, 1)=9, and nT(3, 0)=5. At x=1, lT, 3, 3 is equal to one
of the five lT, 3, 2, j’s while the other four are equal to four of the nine
lT, 3, 1, j’s, and finally, the remaining five of these lT, 3, 1, j’s are equal, respec-
tively, to the five lT, 3, 0, j’s.

4.3. Cyclic Strips of the Square Lattice with Self-Dual Boundary

Conditions

We have previously calculated the Tutte polynomial for cyclic strips
of the square lattice with self-dual boundary conditions. (35–37) These strip
graphs have (i) a fixed transverse width Ly, (ii) arbitrarily great length Lx,
(iii) periodic longitudinal boundary conditions, and (iv) are such that each
vertex on one side of the strip, which we take to be the upper side (with the
strip oriented so that the longitudinal, x direction is horizontal) is joined by
edges to a single external vertex. A strip graph of this type will be denoted
generically as GD (where the subscript D refers to the self-duality) and,
when its size is indicated, as GD(Ly×Lx). For cyclic strips with self-dual
boundary conditions we determined the general structure of the Tutte
polynomial in ref. 36. We showed that the coefficients were precisely the
o (d) polynomials. The general form of the Tutte polynomial is (36, 37)

T(GD[Ly×m, cyc], x, y)= C
Ly+1

d=1
ō (d) C

nT(GD, Ly, d)

j=1
(lT, GD, Ly, d, j)

m (4.30)

where ō (d) was defined in Eq. (4.13) and

nT(Ly, d)=
2d

Ly+d+1
1 2Ly+1
Ly−d+1
2 (4.31)
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so that for the total number of terms, (36)

NT, GD, Ly, l=
12Ly+1
Ly+1
2 . (4.32)

Note that, in contrast to the situation with the cyclic strips, because the
Tutte polynomial does not contain any prefactor of 1/(x−1), there is no
need to use L’Hopital’s rule in evaluating this polynomial to get the relia-
bility polynomial. Related to this, the coefficients are ō (d), i.e., do not
contain the factor of q that the o (d) coefficients do. In this evaluation
at x=1, i.e., q=0, the ō (d) simply reduce to the constants (−1)d+1 d. The
reliability polynomial for the cyclic self-dual strip, R(GD[Ly×m], p], thus
contrasts with the reliability polynomial for the cyclic strip graphs in not
having any terms proportional to m, a consequence of the fact that one did
not have to use L’Hopital’s rule in evaluating the corresponding Tutte
polynomial at x=1.

Our next result is

Theorem 4.3. The reliability polynomial of the self-dual strip graph
GD[Ly×Lx] is (with Lx=m)

R(GD[Ly×m], p)=pLym C
Ly+1

d=1
(−1)d+1 d C

nT(GD, Ly, d)

j=1
(aGD, Ly, d, j)

m (4.33)

where

aGD, Ly, d, j=(1−p)
Ly lT, GD, Ly, d, j |x=1, y=1/(1−p). (4.34)

Proof. This result follows directly from (4.30) and (3.2), using (4.15)
and the fact that the number of vertices and edges for a graph in this family
are |V|=LyLx+1 and |E|=2LyLx. L

From our explicit calculation of R(GD[Ly×m], p) for several values
of the width Ly, we find that there is no reduction in the total number of
l’s when one carries out the evaluation at x=1 for Eq. (4.33). Hence, for
the cases that we have studied, this total number of l’s in the reliability
polynomial for the self-dual cyclic strips of the square lattice is the same
as the number for the Tutte polynomial (Potts model partition function)
for these graphs. Specifically, this is NR, GD, Ly, l=3, 10, 35 for Ly=1, 2, 3,
respectively.
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4.4. Strips with Free Longitudinal Boundary Conditions

As before for chromatic and Tutte polynomials, it is convenient to
express the results in terms of a generating function. For a strip graph of
type Gs (where this includes the specification of the transverse boundary
conditions) and length m longitudinal edges, we have

C(Gs, p, z)= C
.

m=0
R((Gs)m, p) zm (4.35)

where

C(Gs, p, z)=
N(Gs, p, z)
D(Gs, p, z)

. (4.36)

The numerator and denominator are rational functions of z and p of the
form

N(Gs, p, z)= C
degz(N)

j=1
AGs, jz

j (4.37)

D(Gs, p, z)=1+ C
degz(D)

j=1
bGs, jz

j. (4.38)

The property (4.5) is manifested in the relations

bGs, 1=−1, bGs, j=0, 2 [ j [NGs, a for p=1. (4.39)

For the strips of the square and triangular lattices with free longitudinal
boundary conditions,

AGs, 0=R(TLy , p)=p
Ly −1 for Gs=sq, t. (4.40)

4.5. Accumulation Set of Zeros of R(G, p)

Concerning the continuous accumulation set B of the zeros of R(G, p)
for cyclic and Möbius lattice strip graphs in the limit Lx Q., we note

Theorem 4.4. Consider the lattice strip graphs G[Ly, Lx, cyc] and
G[Ly, Lx, Mb]. The continuous accumulation set B defined in the limit
Lx Q. is the same for both of these.

Proof. This is a corollary of earlier theorems that we have proved for
the accumulation set of the zeros of the Tutte polynomial or equivalent
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Potts model partition function, stating that these are the same for a given
strip with cyclic or Möbius longitudinal boundary conditions. L

We next discuss the construction of families of graphs G for which the
reliability polynomial R(G, p) has zeros that extend to the circle |p−1|=1.
A useful lemma can be stated as follows: (5, 15) Let G=(V, E) be a con-
nected graph with no multiple edges. We also assume that G has no loops;
this assumption incurs no loss of generality since loops do not affect the
reliability polynomial. Now let Ga be the graph obtained from G by replac-
ing each edge by a edges connecting the same pair of vertices. Then

R(Ga, p)=R(G, p −) (4.41)

where

p −=1−(1−p)a. (4.42)

In addition to the proofs in refs. 5 and 15, this result can be understood
easily from a physics viewpoint, using the expression of the reliability
polynomial as a special case of the Potts model partition function. Replac-
ing every edge in G by a edges connecting the same vertices has the effect of
replacing the spin–spin coupling J by J −=aJ in the Potts model Hamilto-
nian H, and hence KQK −=aK, so that, since y=eK (cf. Eq. (3.9)),

yQ y −=ya, i.e., vQ v −=(v+1)a−1 (4.43)

and

Z(Ga, q, v)=Z(G, q, v −). (4.44)

The result (4.41) then follows via (3.11) (or (3.2)).
As noted in refs. 5 and 15, using this result, one can generate families

of graphs, namely those with replicated edges, that extend to |p−1|=1.
The relation (4.44) is equivalent to

T(Ga, x, y)=1
ya−1
y−1
2n−1 T(G, x −, y −) (4.45)

where y − was given in (4.43) and

x −=1+
(x−1)(y−1)
ya−1

. (4.46)
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Now let G=(V, E) be a simple graph (i.e., a graph without loops or mul-
tiple edges) that is connected and has at least one edge. As before, the
exclusion of loops does not incur any loss of generality since loops have no
effect on the reliability polynomial. Now let Ga be the graph obtained from
G by replacing each edge by a edges connecting the same pair of vertices.
Then the zeros of R(Ga, p) in the complex p plane include the following:

p=1−e
2pik
a , k=0, 1,..., a−1 (4.47)

and these satisfy |p−1|=1. This follows by noting that in general, for the
specified G with at least one edge, R(G, p) contains a factor p |V|−1 and
hence Ga contains a factor of (p −) |V|−1. Therefore R(Ga, p) has at least one
zero at p −=0. Recalling the relation (4.42) and solving for the a roots of
this equation in the p plane, we obtain (4.47), which satifies |p−1|=1.

Let us give an example. Perhaps the simplest is to consider the graph
G=T2. Replacing the single edge in this graph by a edges yields a graph
commonly denoted the ‘‘thick link’’ or ‘‘fat link,’’ TLa. This is the (planar)
dual to the circuit graph Ca; i.e., TLa=C

g
a . From the elementary result

R(T2, p)=p and our theorem (4.41), one gets R(FLa, p)=p −, which has
zeros at the points (4.47). The location of these zeros for a=(a) 2, (b) 3,
and (c) 4 are (a) p=0, 2; (b) p=0 and p=3/2±(i/2)`3; (c) p=0, 2,
and 1±i. In the limit aQ., one then obtains an accumulation set B that
is the circle |p−1|=1. Note that in this example, although the number of
edges goes to infinity, the number of vertices is fixed at 2. One can also
consider families of graphs with a subset of the vertices replicated. The
family of Ly=2 strips of the square lattice with cylindrical or torus
boundary conditions are of this type, with double vertical and single
horizontal edges. These families will be analyzed below.

5. CALCULATIONS FOR SPECIFIC FAMILIES OF GRAPHS

5.1. Ly=1 Strips of the Square Lattice

The reliability function for the free Ly=1 strip is a special case of the
result for a tree graph Tm with m vertices, namely R=pm−1. For the case of
cyclic boundary conditions, the strip is the circuit graph, Cm. By an ele-
mentary application of the deletion-contraction theorem, one has

R(Cm, p)=pm−1[m(1−p)+p]. (5.1)

Hence,

r=p (5.2)
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for the infinite-length limits of both the free and cyclic Ly=1 strips. The
polynomial R(Cm, p) has a zero of multiplicity m−1 at p=0 and another
zero at p=m/(m−1), which monotonically approaches p=1 from above
as mQ.. The r function (5.2) for these Ly=1 strips has the special prop-
erty that dr/dp=1. As will be seen, the r functions that we shall calculate
for other strips have various nonzero slopes at p=0 but, in contrast to
(5.2), they have the derivative dr/dp=0 at p=1.

5.2. Ly=2 Strip of the Square Lattice with Free Boundary

Conditions

The generating function for this strip is of the form (4.36) with N=p
and

D(p, z)=1−p2(4−3p) z+p4(1−p) z2

=(1−p2asq, 2, 0, 1z)(1−p2asq, 2, 0, 2z) (5.3)

where

asq, 2, 0, j=
1
2 [4−3p±`R2], j=1, 2 (5.4)

with

R2=12−20p+9p2. (5.5)

The subscripts in the notation make reference to the structure of the a’s for
the cyclic strip; see below. We observe that R(sq[2×m], p) has the factor
(4−3p) if m \ 1 is odd. For the cases that we have examined, besides the
real root at p=0, this reliability polynomial has a single real root at
p=4/3 if and only if m \ 1 is odd.

The dominant term in the physical interval p ¥ [0, 1] is asq, 2, 0, 1, and
hence the asymptotic reliability per vertex for Lx Q. is

r(sq[2×., free], p)=p(asq, 2, 0, 1)1/2

=
p

`2
[4−3p+`12−20p+9p2]1/2. (5.6)

This has the derivatives

dr
dp
:
p=0
=
1+`3

`2
=1.93185... (5.7)
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and

dr
dp
:
p=1
=0. (5.8)

The locus B for the Ly=2 free strips of the square lattice, shown in
Fig. 1, is formed as the continuous accumulation set of zeros of the relia-
bility polynomial in the limit of infinite strip length, mQ. and is the
solution of the equation expressing the degeneracy of magnitudes
|asq, 2, 0, 1 |=|asq, 2, 0, 2 |. This is an arc of a circle with radius 1/3 centered at 1,

p=1+13 e
ih h ¥ [−hsq2, hsq2] (5.9)

where

hsq2=arctan(2`2) 4 70.53°. (5.10)

This circular arc crosses the real p axis at a single point, which is thus pc,
namely

pc=
4
3 for sq, FBCy, 2×.. (5.11)

This applies here for the case of free longitudinal boundary conditions, and
we shall show below that it also applies for the case of periodic or twisted
periodic longitudinal boundary conditions. We find that this property that
the value of pc for a strip of a given type of lattice and a given set of

0 0.5 1 1.5 2
Re(p)

-1

-0.5

0

0.5

1

Im(p)

Fig. 1. Singular locus B for the Lx Q. limit of sq(2×Lx) for either free, periodic, or
twisted periodic longitudinal boundary conditions. For comparison, zeros of the reliability
polynomial are shown for the cyclic strip with Lx=30 (i.e., n=60).

Reliability Polynomials and Their Asymptotic Limits for Families of Graphs 1039



transverse boundary conditions is independent of the longitudinal bound-
ary conditions also holds for other strips, and we indicate this when listing
these values of pc (or (pc)eff ) by displaying only the transverse boundary
condition (FBCy in Eq. (5.11)). The arc has endpoints at the values of p
where the the expression 12−20p+9p2 in the square roots in asq, 2, 0, j
vanishes so that asq, 2, 0, 1=asq, 2, 0, 2. These endpoints are

p=1+13 e
±ihsq2=2

9 (5±`2 i) 4 1.11111±0.31427i. (5.12)

Recall that two roots of an algebraic equation are equal where the discri-
minant vanishes; for the equation a2−(4−3p) a+1−p=0 that yields
asq, 2, 0, j, j=1, 2 as its roots, this discriminant is 12−20p+9p2.

5.3. Ly=3 Strip of the Square Lattice with Free Boundary

Conditions

The generating function for this strip follows from our calculation of
Z(G, q, v) for this strip (33) and has the form (4.36) with

N=p2[1+p4(1−p) z−p6(1−p)3 z2] (5.13)

and

D(p, z)=1+C
4

j=1
bsq3f, jz j=D

4

j=1
(1−p3asq3f, jz) (5.14)

where

bsq3f, 1=−p3(15−24p+10p2) (5.15)

bsq3f, 2=p6(1−p)(32−66p+46p2−11p3) (5.16)

bsq3f, 3=−p9(1−p)3 (15−20p+7p2) (5.17)

bsq3f, 4=p12(1−p)5. (5.18)

In Fig. 2 we show the locus B for the Ly=3 strips of the square
lattice with any longitudinal boundary conditions, together with zeros for
the cyclic strip of this width with Lx=20. This locus consists of two
complex-conjugate arcs which do not cross the real axis. From the arc
endpoints closest to the real axis, one can infer the effective quantity
(pc)eff 4 1.335. The locus is again concave to the left and roughly centered
about the point p=1.
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Fig. 2. Singular locus B for the Lx Q. limit of sq(3×Lx) for either free, periodic, or
twisted periodic longitudinal boundary conditions. For comparison, zeros of the reliability
polynomial are shown for the cyclic strip of this width with Lx=20 (i.e., n=60).

5.4. Ly=2 Cyclic and Möbius Strips of the Square Lattice

For the reader’s convenience, we shall give some details of our cal-
culation for this family of graphs. The Tutte polynomials for these families
of graphs were computed in ref. 28 and have NT, 2, l=6, in accordance with
the general formula (4.23). There are nT(2, 0)=2 terms with coefficient
c (0), denoted lT, sq, 2, 0, j, j=1, 2; nT(2, 1)=3 terms with coefficient c (1),
denoted lT, sq, 2, 1, j, and the unique term with coefficient c (2), which term is
lT, sq, 2, 2=1 as a special case of the general result (4.24). Explicitly,

T(sq[Ly=2, Lx=m, cyc], x, y)

=
1
x−1

C
2

d=0
c (d) C

nT(2, d)

j=1
(lT, sq, 2, d, j)m

=
1
x−1
5C
2

j=1
(lT, sq, 2, 0, j)m+c (1) C

3

j=1
(lT, sq, 2, 1, j)m+c (2)(lT, sq, 2, 2)m6 (5.19)

where nT(Ly, d) was recalled from ref. 31 in Eq. (4.21) and (28)

lT, sq, 2, 0, j=
1
2 [(1+y+x+x

2)±(y2+2y(1+x−x2)+(x2+x+1)2)1/2]
(5.20)

lT, sq, 2, 1, j=
1
2 [x+y+2±((x−y)

2+4(x+y+1))1/2] (5.21)
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with j=1, 2 corresponding to ±, and

lT, sq, 2, 1, 3=x. (5.22)

We have discussed above how equalities occur between certain lT, G, Ly, d, j’s
when evaluated at x=1. We show this explicitly here. First, we have

lT, sq, 2, 0, j=lT, sq, 2, 1, j=
1
2 [y+3±`y

2+2y+9] for x=1 (5.23)

where j=1, 2 refer correspond to ± on the right-hand side, respectively.
Furthermore,

lT, sq, 2, 1, 3=lT, sq, 2, 2=1 for x=1. (5.24)

Hence, NR, sq, 2, l=(1/2) NT, sq, 2, l=3, in accordance with the inequality
(4.27) (realized as an equality) in our theorem above. Using L’Hopital’s
rule to evaluate the Tutte polynomial (5.19) at x=1, we obtain

R(sq[Ly=2, m, cyc], p)=p2m 5(asq, 2, 0, 1)m+(asq, 2, 0, 2)m−2(asq, 2, 2)m

+mp−1(1−p)2 3(asq, 2, 0, 1)m−1 11+
3(1−p)

`R2
2

+(asq, 2, 0, 2)m−1 11−
3(1−p)

`R2
2−(asq, 2, 2)m−146

(5.25)

where R2 was defined above in Eq. (5.5), the asq, 2, 0, j were given in (5.4)
above, and

asq, 2, 2=1−p (5.26)

as a special case of (4.25) above.
For the Ly=2Möbius (Mb) strip of the square lattice (28)

T(sq[Ly=2, Lx=m,Mb], x, y)

=
1
x−1
5C
2

j=1
(lT, sq, 2, 0, j)m

+c (1) 1 −(lT, sq, 2, 1, 1)m+C
3

j=2
(lT, sq, 2, 1, j)m2−(lT, sq, 2, 2)m6 . (5.27)
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From this we obtain

R(sq[Ly=2, m, Mb], p)

=p2m 5(asq, 2, 0, 1)m+(asq, 2, 0, 2)m−(asq, 2, 2)m

+mp−1(1−p)2 3(asq, 2, 0, 1)m−1 11+
3(1−p)

`R2
2

+(asq, 2, 0, 2)m−1 11−
3(1−p)

`R2
2+(asq, 2, 2)m−146 . (5.28)

For both of these Ly=2 cyclic and Möbius strips of the square lattice,
the dominant term in the physical interval p ¥ [0, 1] is asq, 2, 0, 1 and hence
the asymptotic reliability per vertex, r, is the same as that for the corre-
sponding strip with free longitudinal boundary conditions, given by (5.6):

r(sq[2×., cyc], p)=r(sq[2×., Mb], p)

=r(sq[2×., free], p)

=r(sq[2×., FBCy], p). (5.29)

For the infinite-length limit of these strip graphs, and for the respective
infinite-length limits of other strip graphs to be considered below, we find
that the r function is independent of the longitudinal boundary conditions.
This is indicated in the last line of Eq. (5.29) and analogous equations
below by listing only the type of transverse boundary condition. The
dominant term for large positive p is asq, 2, 0, 2. Because the two dominant
a’s in the reliability polynomials for these cyclic and Möbius strips are the
same as the two a’s that enter in the reliability polynomial for the corre-
sponding strip with free boundary conditions, it follows that the locus B is
identical for the Ly=2 strips of the square lattice with free, cyclic, and
Möbius boundary conditions. This locus is shown in Fig. 1.

We find that the reliability polynomials R(sq[2×Lx, cyc], p) and
R(sq[2×Lx, Mb], p) have only p=0 as a real root if Lx \ 1 is odd, while
for even Lx \ 2, they each have an additional real root. In Table I we list
the values of this additional respective real root for the reliability polyno-
mials of these two strips. The results in this table suggest that as Lx Q.,
these two respective additional real zeros for the cyclic and Möbius strips
could approach the same limit. The value of this limit could be about 1.3.
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Table I. Values of the Real Root (Aside from p=0) of

R(sq[2×Lx, cyc], p) and R(sq[2×Lx, Mb], p) for Even Lx

Lx cyc Mb

2 2.000000 1.626538
4 1.404813 1.388652
6 1.349507 1.346559
8 1.333333 1.332635

10 1.327103 1.326919
12 1.324413 1.324362
14 1.323229 1.323214
16 1.322761 1.322757
18 1.322658 1.322657
20 1.322749 1.322748

5.5. Ly=2 Cylindrical Strips of the Square Lattice

This is the minimal-width strip of the square lattice with cylindrical
boundary conditions and involves double vertical edges. The results for the
reliability polynomial are conveniently expressed in terms of the generating
function (4.35) and (4.36). We find

N=R(C2, p)=p(2−p) (5.30)

D=1−p2(6−8p+3p2) z+(1−p)2 p4z2

=D
2

j=1
(1−p2asqcyl2, jz) (5.31)

where

asqcyl2, j=
1
2 [6−8p+3p

2±`(2−p)(4−3p)(4−6p+3p2)]. (5.32)

We observe that R(sq[2×Lx, cyl], p) always has the factor (2−p); this
is associated with the fact that this strip has double vertical edges. For
odd m \ 1, i.e., even Lx \ 2, R(sq[2×Lx, cyl], p) also has the factor
(3p2−8p+6), with roots (1/3)(4±`2 i). For m \ 4, we observe that
R(sq[2×Lx, cyl], p) has, besides the real zeros at p=0, 2, a set of real
zeros in the interval (1, 2]. Among other features, we note that as m
increases, (i) the number of real zeros in this interval increases; (ii) the
smallest zero in this interval decreases monotonically toward 4/3; (iii) the
largest zero increases monotonically toward 2 as m increases, and (iv)
the density of zeros is largest in the regions slightly above 4/3 and slightly
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Fig. 3. Singular locus B for the Lx Q. limit of sqcyl(2×Lx) for either free or (twisted)
periodic longitudinal boundary conditions. For comparison, zeros of the reliability polyno-
mial are shown for the torus strip with Lx=30 (i.e., n=60).

below 2. A plot of these zeros is shown in Fig. 3; as is evident from this
plot, as mQ., these real zeros away from p=0 accumulate to form the
line segment on B extending between p=4/3 and p=2.

In the physical interval p ¥ [0, 1] the dominant term is asqcyl2, 1, so the
asymptotic reliability per vertex is

r(sq[2×., PBCy], p)

=p(asqcyl2, 1)1/2

=
p

`2
[6−8p+3p2+`(2−p)(4−3p)(4−6p+3p2)]1/2. (5.33)

This has derivatives

dr
dp
:
p=0
=1+`2=2.41421... (5.34)

and dr/dp=0 at p=1.
The locus B, shown in Fig. 3, is given by the union of an arc of a

circle with a line segment on the real axis:

B: 3p=1+ 1
`3
e ih, h ¥ [−p/2, p/2]4 2 34

3
[ p [ 24 . (5.35)
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Hence,

pc=2 for sq, PBCy, 2×.. (5.36)

The circular arc intersects the real axis and line segment at p=1+ 1
`3

4 1.577. The endpoints of the arc are located at

psqce, p
g
sqce=1±

i

`3
. (5.37)

These points, together with the endpoints of the line segment, p=4/3
and p=2 are the zeros of the expression in the square root in asqcyl2, j
in Eq. (5.32), which expression is the discriminant of the equation
a2−(6−8p+3p2) a+(1−p)2=0 whose roots are these a’s.

5.6. Ly=2 Torus and Klein Bottle Strips of the Square Lattice

Either using a direct calculation or as a special case of our previous
calculation of the Tutte polynomial, (32) using (3.2), we find

R(sq[Ly=2, m, torus], p)

=p2m 5(asqtor2, 1)m+(asqtor2, 2)m−2(asqtor2, 3)m

−mp−1(1−p)2 3(asqtor2, 1)
m−1

2
12p−3+ (p−2)(6p2−13p+8)

`(p−2)(3p−4)(3p2−6p+4)
2

+
(asqtor2, 2)m−1

2
12p−3− (p−2)(6p2−13p+8)

`(p−2)(3p−4)(3p2−6p+4)
2

+(1−p)(asqtor2, 3)m−146 (5.38)

where

asqtor2, j=asqcyl2, j j=1, 2 (5.39)

with asqcyl2, j, j=1, 2, given above in (5.32) and,

asqtor2, 3=(1−p)2. (5.40)
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For the Ly=2 Klein bottle (Kb) strip of the square lattice

R(sq[Ly=2, m, Kb], p)

=p2m 5(asqtor2, 1)m+(asqtor2, 2)m−(asqtor2, 3)m

−mp−1(1−p)2 3(asqtor2, 1)
m−1

2
12p−3+ (p−2)(6p2−13p+8)

`(p−2)(3p−4)(3p2−6p+4)
2

+
(asqtor2, 2)m−1

2
12p−3− (p−2)(6p2−13p+8)

`(p−2)(3p−4)(3p2−6p+4)
2

−(1−p)(asqtor2, 3)m−146 . (5.41)

In the physical region p ¥ [0, 1], the dominant term is asqtor2, 1 for
both of these families of strips, and hence r(sq[2×., torus/Kb], p)=
r(sq[2×., cyl], p). This equality has already been incorporated in our
notation r(sq[2×., PBCy], p) in Eq. (5.33). This is another example of
the feature that for a given type of strip graph Gs with a given width and
set of transverse boundary conditions, r is independent of the longitudinal
boundary conditions.

Similarly, since the locus B is determined by the equality in magnitude
of the two dominant eigenvalues asqtor2, 1 and asqtor2, 2, and since these are the
same for the corresponding strip with cylindrical boundary conditions, it
follows that this locus is the same as the locus for the Ly=2 cylindrical
strip of the square lattice, shown in Fig. 3.

5.7. Ly=3 Cylindrical Strips of the Square Lattice

Again we express the results in terms of the generating function for the
reliability polynomial, (4.35) and (4.36). We find

N=R(C3, p)+p5(3−p)(1−p)2 z=p2[3−2p+p3(3−p)(1−p)2 z]
(5.42)

where R(C3, p)=p2(3−2p), and

D=1−p3(24−56p+46p2−13p3) z

+p6(1−p)2 (24−46p+30p2−7p3) z2−p9(1−p)5 z3

=D
3

j=1
(1−p3asqcyl3, jz). (5.43)
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Table II. Values of the Real Root (Aside from

p=0) of R(sq[3×/, cyl], p) for Odd Lx

Lx root

1 1.500000
3 1.440337
5 1.422909
7 1.416297
9 1.412887

11 1.410809
13 1.409409
15 1.408403
17 1.407644
19 1.407051
21 1.406575

The largest of the roots of the associated equation

t3−(24−56p+46p2−13p3) t2

+(1−p)2 (24−46p+30p2−7p3) t−(1−p)5=0 (5.44)

is the dominant asqcyl3, max, so that

r(sq[3×., PBCy], p)=p(asqcyl3, max)1/3. (5.45)

This function has the property that dr/dp=2.84207... at p=0 and
dr/dp=0 at p=1. We find that the reliability polynomial R(sq[3×.,
cyl], p) has only p=0 as a real root if m \ 1 is odd, i.e., Lx \ 2 is even,
while for even m \ 0, i.e., odd Lx \ 1, it has an additional real root which
decreases as m increases and appears to approach a limit of roughly 1.4. In
Table II we list the values of this additional real root.

In Fig. 4 we show a plot of B for the Lx Q. limit of the Ly=3 strip
of the square lattice with cylindrical boundary conditions.

5.8. Ly=4 Cylindrical Strip of the Square Lattice

As before, we express the results for the Ly=4 strip of the square
lattice with cylindrical boundary conditions in terms of the numerator and
denominator of the generating function. In particular, for the denominator,
we find

D=1+C
6

j=1
bsqcyl4, jz j=D

6

j=1
(1−p4asqcyl4, jz) (5.46)
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Fig. 4. Singular locus B for the Lx Q. limit of sqcyl(3×Lx) for either free or (twisted)
periodic longitudinal boundary conditions. For comparison, zeros of the reliability polyno-
mial are shown for the toroidal strip with Lx=20 (i.e., n=60).

where

bsqcyl4, 1=−p4(90−293p+369p2−211p3+46p4) (5.47)

bsqcyl4, 2=p8(1−p)2 (735−2977p+5094p2

−4710p3+2481p4−706p5+85p6) (5.48)

bsqcyl4, 3=−p12(1−p)4 (1548−7518p+15948p2−19170p3

+14104p4−6351p5+1621p6−181p7) (5.49)

bsqcyl4, 4=p16(1−p)7 (735−3177p+5870p2−5934p3

+3456p4−1097p5+148p6) (5.50)

bsqcyl4, 5=−p20(1−p)11 (90−223p+208p2−88p3+15p4) (5.51)

bsqcyl4, 6=p24(1−p)15. (5.52)

The degree of D is too high to obtain closed-form algebraic expressions for
the asqcyl4, j’s, but they may be computed numerically. Denoting the domi-
nant asqcyl4, j in the physical interval p ¥ [0, 1] as asqcyl4, max, one has, for the
asymptotic reliability per vertex, r(sq[4×., PBCy], p)=p(asqcyl4, max)1/4. In
Fig. 5 we show the locus B for the infinite-length limit of this strip. This
locus includes two complex-conjugates arcs, a self-conjugate arc crossing
the real axis at p 4 1.364, and a real line segment extending from p=4/3
to p 4 1.384, which defines the value of pc for this strip.
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Fig. 5. Singular locus B for the Lx Q. limit of sqcyl(4×Lx) for either free or (twisted)
periodic longitudinal boundary conditions. For comparison, zeros of the reliability polyno-
mial are shown for the cylindrical strip with Lx=21 (i.e., n=84).

5.9. Ly=2 Strip of the Triangular Lattice with Free Boundary

Conditions

In addition to studying how reliability polynomials and their asymp-
totic r functions depend on the width and boundary conditions, it is also of
interest to explore how they depend on the lattice type. For this purpose we
have carried out calculations of reliability polynomials for strips of the
triangular and honeycomb lattice. We begin with the Ly=2 strip of the
triangular lattice with free boundary conditions, for which we calculate
the generating function with

N(p, z)=p[1+p(1−p) z] (5.53)

D(p, z)=1−p2(7−10p+4p2) z+p4(1−p)2 z2

=(1−p2at, 2, 0, 1z)(1−p2at, 2, 0, 2z) (5.54)

where

at, 2, 0, j=
1
2
[7−10p+4p2±(3−2p)`5−8p+4p2]

=53−2p±`5−8p+4p
2

2
62 for j=1, 2. (5.55)

We note that R(p, z) for the strip of the triangular lattice of length m has
the factor (8−11p+4p2) if m=1 mod 3, where our convention is that
m=1 is a single square with diagonal (i.e., two triangles), and so forth.
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The dominant term in the physical interval p ¥ [0, 1] is at, 2, 0, 1, and
hence the reliability per vertex for Lx Q. is

r(t[2×., FBCy], p)=p(at, 2, 0, 1)1/2

=
p

`2
[7−10p+4p2±(3−2p)`5−8p+4p2]1/2.

(5.56)

This has derivatives

dr
dp
:
p=0
=
3+`5

2
=2.61803... (5.57)

and dr/dp=0 at p=1.
The locus B, shown in Fig. 6, is given by an arc of a circle:

B: p=1+
1
2
e ih, h ¥ 5−p

2
,
p

2
6 . (5.58)

This is a leftwardly concave circular arc that crosses the real axis at

pc=
3
2 tri, FBCy, 2×., (5.59)

and has endpoints at p=1±i/2, where the factor 5−8p+4p2 in the
discriminant (5−8p+4p2)(3−2p)2 of the equation a2−(7−10p+4p2) a
+(1−p)2=0 yielding the a’s vanishes. We shall see that a rather different
strip, the self-dual strip of the square lattice of width Ly=1, yields the
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Fig. 6. Singular locus B for the Lx Q. limit of tri(2×Lx) for either free or (twisted)
periodic longitudinal boundary conditions. For comparison, zeros of the reliability polyno-
mial are shown for the cyclic strip with Lx=30 (i.e., n=60).
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same locus B, although the reliability polynomials are different. Interest-
ingly, the effective degree is the same, namely 4, for these two strips,
although the Ly=2 cyclic strip of the triangular lattice is a D-regular
graph, with uniform vertex degree D=4, whereas the self-dual strip of the
square lattice with Ly=1 has two quite different kinds of vertex degrees
—3 for the outer rim and m for the central vertex connected to each vertex
on the rim by edges. However, it is not, in general, true that if two families
of graphs have the same effective vertex degree then the resultant loci B are
the same; for example, each of the self-dual cyclic strips of the square
lattice of width Ly has the same effective vertex degree in the limit Lx Q.,
but they have different loci B.

5.10. Ly=2 Cyclic Strip of the Triangular Lattice

We next consider the Ly=2 cyclic strip of the triangular lattice. Either
using a direct calculation or as a special case of our previous calculation of
the Tutte polynomial, (29) using (3.2), we find

R(t[Ly=2, m, cyc], p)

=p2m 5(at, 2, 0, 1)m+(at, 2, 0, 2)m−2(at, 2, 2)m

+mp−1(5−3p)−1 (1−p)2 3(at, 2, 0, 1)m−1 (1−p) 17−4p+(3−2p)(5−4p)
`4p2−8p+5

2

+(at, 2, 0, 2)m−1 (1−p) 17−4p−(3−2p)(5−4p)
`4p2−8p+5

2

−2(p2−3p+2)(at, 2, 2)m−146 (5.60)

where at, 2, 0, j were given above for the free strip and

at, 2, 2=(1−p)2. (5.61)

Because the dominant a’s consist of at, 2, 0, j, j=1, 2, which are the same for
the free, cyclic, and Möbius strips, it follows that the locus B is the same for
the Lx Q. limits of these three strips.

5.11. Ly=2 Free Strips of the Honeycomb Lattice

For the Ly=2 strip of the honeycomb lattice with free boundary
conditions we calculate a generating function with
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N=p (5.62)

D=1−p4(6−5p) z+(1−p) p8z2

=(1−p4ahc, 2, 0, 1z)(1−p4ahc, 2, 0, 2z) (5.63)

where

ahc, 2, 0, j=
1
2 [6−5p±`H2] (5.64)

with

H2=32−56p+25p2. (5.65)

In the physical interval p ¥ [0, 1] the dominant term is ahc, 2, 0, 1, so the
asymptotic reliability per vertex is

r(hc[2×., FBCy], p)=p(ahc, 2, 0, 1)1/4

=
p
21/4
[6−5p+`32−56p+25p2]1/4. (5.66)

This has derivatives

dr
dp
:
p=0
=(1+`2)1/2=1.55377... (5.67)

and dr/dp=0 at p=1.
The locus B, shown in Fig. 7, is given by an arc of a circle:

B: p=1+15 e
ih, h ¥ [−hhce, hhce] (5.68)

where

hhce=arctan(4/3) 4 53.13°. (5.69)

This is a leftwardly concave arc that crosses the real axis at

pc=
6
5 for hc, FBCy, 2×., (5.70)

and has endpoints at

phce, p
g
hce=

4
25 (7±i) (5.71)

where the discriminantH2 vanishes.
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Fig. 7. Singular locus B for the Lx Q. limit of hc(2×Lx) for either free or (twisted)
periodic longitudinal boundary conditions. For comparison, zeros of the reliability polyno-
mial are shown for the cyclic strip with Lx=30 (i.e., n=120).

5.12. Ly=2 Cyclic and Möbius Strips of the Honeycomb Lattice

For the Ly=2 cyclic strip of the honeycomb lattice, either using a
direct calculation or as a special case of our previous calculation of the
Tutte polynomial, (32) using (3.2), we find

R(hc[Ly=2, m, cyc], p)=p4m 5(ahc, 2, 0, 1)m+(ahc, 2, 0, 2)m−2(ahc, 2, 2)m

+mp−1(1−p)2 3(ahc, 2, 0, 1)m−1 13+
16−15p

`H2
2

+(ahc, 2, 0, 2)m−1 13−
16−15p

`H2
2−2(ahc, 2, 2)m−146

(5.72)

where ahc, 2, 0, j, j=1, 2, were given above in (5.64) and, as a special case of
(4.25), we have

ahc, 2, 2=1−p. (5.73)

For the Ly=2 Möbius strip of the honeycomb lattice, using the same
methods, we obtain
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R(hc[Ly=2, m, Mb], p)

=p4m 5(ahc, 2, 0, 1)m+(ahc, 2, 0, 2)m−(ahc, 2, 2)m

+mp−1(1−p)2 3(ahc, 2, 0, 1)m−1 13+
16−15p

`H2
2

+(ahc, 2, 0, 2)m−1 13−
16−15p

`H2
2+2(ahc, 2, 2)m−146 . (5.74)

Since the locus B is determined by the equality in magnitude of the
two dominant eigenvalues ahc, 2, 0, 1 and ahc, 2, 0, 2, and since these are the same
for the strip with free and periodic or twisted periodic boundary condi-
tions, it follows that this locus is the same as (5.68) and (5.69) for the
Ly=2 cyclic or Möbius strip of the honeycomb lattice. We show this locus
in Fig. 7.

5.13. Ly=1 Cyclic Strip of the Square Lattice with Self-Dual

Boundary Conditions

We have presented some general structural results above for reliability
polynomials of cyclic strip graphs of the square lattice with self-dual
boundary conditions. Recall that these are denoted GD, of size Ly×Lx; in
subscripts we will use the symbol sqdbc. In this and the next section we give
explicit calculations of the reliability polynomials. Note that GD[1×Lx] is
the wheel graph with a central spoke vertex connected to Lx outer vertices
on the rim. Either using a direct calculation or as a special case of our pre-
vious calculation of the Tutte polynomial, (35, 36) using (3.2), we find (with
Lx=m)

R(GD[1×m], p)=pm[(asqdbc, 1, 1, 1)m+(asqdbc, 1, 1, 2)m−2(asqdbc, 1, 2, 1)m]
(5.75)

where

asqdbc, 1, 1, j=
1
2 [3−2p±`5−8p+4p

2] j=1, 2 (5.76)

and, consistent with (4.25),

asqdbc, 1, 2, 1=1−p. (5.77)

In accordance with our general results above, the total number of terms is
the same as that for the Tutte polynomial, NR, GD, Ly=1, l=NT, GD, Ly=1, l=3.
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In the physical interval p ¥ [0, 1] the dominant term is asqdbc, 1, 1, 1 so
that the asymptotic reliability per vertex is

r(GD[1×.], p)=pasqdbc, 1, 1, 1

=p 53−2p+`5−8p+4p
2

2
6 . (5.78)

Interestingly, although the graphs are different and the reliability polyno-
mials are different for the GD(1×m) and tri(2×m) strips (with either both
free or both periodic longitudinal boundary conditions), the infinite-length
limits of these four families of graphs yield the same r function, i.e., (5.78)
is identical to r(tri[2×., FBCy], p) given above in (5.56).

The locus B is shown in Fig. 8 and forms arc of a circle centered at
p=1 of radius 1/2 with endpoints at p=1±(1/2) i, i.e.,

B: p=1+
1
2
e ih, h ¥ 5−p

2
,
p

2
6 (5.79)

so that

pc=
3
2 for GD(1×.). (5.80)

The endpoints occur at the branch point singularities of the polynomial
5−8p+4p2 that appears in the square root in the terms (5.76). The locus
(5.79) is identical to (5.58), although the a’s involved are different.
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Fig. 8. Singular locus B for the Lx Q. limit of GD(1×Lx). For comparison, zeros of the
reliability polynomial are shown for Lx=40.
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5.14. Ly=2 Cyclic Strip of the Square Lattice with Self-Dual

Boundary Conditions

For GD[2×m], our general formulas give NR, GD, 2, l=10 with
nR(GD, 2, 1)=5, nR(GD, 2, 2)=4, and nR(GD, 2, 3)=1. We find that
R(GD[2×m], p) has the form (4.33),

R(GD[2×m], p)

=p2m 5C
5

j=1
(asqdbc, 2, 1, j)m−2 C

4

j=1
(asqdbc, 2, 2, j)m+3(asqdbc, 2, 3, 1)m6 (5.81)

where

asqdbc, 2, 3, 1=(1−p)2 (5.82)

and the asqdbc, 2, 2, j are the roots of the degree-4 equation

t4+adb1t3+adb2t2+adb3t+adb4=0 (5.83)

with

adb1=−(1−p)(7−5p) (5.84)

adb2=(1−p)2 (13−17p+5p2) (5.85)

adb3=−(1−p)4 (7−5p) (5.86)

adb4=(1−p)6. (5.87)

In Eq. (5.81) the asqdbc, 2, 1, j are the roots of the degree-5 equation

t5+bdb1t4+bdb2t3+bdb3t2+bdb4t+bdb5=0 (5.88)

where

bdb1=−(12−18p+7p2) (5.89)

bdb2=(1−p)(36−67p+41p2−8p3) (5.90)

bdb3=−(1−p)2 (36−75p+53p2−13p3) (5.91)

bdb4=2(1−p)4 (3−2p)(2−p) (5.92)

bdb5=−(1−p)6. (5.93)
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Fig. 9. Singular locus B for the Lx Q. limit of GD(2×Lx). For comparison, zeros of the
reliability polynomial are shown for Lx=30 (i.e., n=61).

The locus B is shown in Fig. 9 and consists of arcs, again concave to
the left, that almost cross, but actually have endpoints near to, the real axis
at q 4 1.4 and have endpoints at q 4 0.7765±0.4302i and q 4 1.406±
0.036795i.

5.15. Ly=3 Cyclic Strip of the Square Lattice with Self-Dual

Boundary Conditions

For GD[3×m], our general formulas give NR, GD, 3, l=35 with
nR(GD, 3, 4)=1, nR(GD, 3, 3)=6, nR(GD, 3, 2)=14, and nR(GD, 3, 1)=14.
We have calculated the reliability polynomial from our earlier calculation
of the Tutte polynomial for this strip. (36, 37) Since the results for the a’s are
rather complicated, we do not list them in detail here (some examples are
given in the Appendix) but instead concentrate on the locus B. This is
shown in Fig. 10.

5.16. Some Families of Graphs with Multiple Edges

Consider a connected graph G=(V, E). We take this graph to be
loopless; this incurs no loss of generality since loops do not affect the
reliability polynomial. Now consider a graph H obtained from G by adding
another edge. Clearly, for the physical range p ¥ [0, 1], the inequality
R(H, p) \ R(G, p) holds, with equality only at p=1. That is, adding
further communications link(s) between two (already connected) nodes in
a network increases the reliability of the network. A particularly simple
modification in the graph is to replace each edge joining two vertices by
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Fig. 10. Singular locus B for the Lx Q. limit of GD(3×Lx). For comparison, zeros of the
reliability polynomial are shown for Lx=20 (i.e., n=61).

a edges joining these edges, thereby obtaining what we have denoted Ga
above. Given any such graph G, whether or not it is a member of a recur-
sive family, our theorem above with (4.41) and (4.42) enables one to cal-
culate R(Ga, p). Here we shall present some illustrations of this. For defi-
niteness, we consider the Ly=2 cyclic strip of the square lattice. Using our
calculation of the reliability polynomial for the Ly=2 strip of the square
lattice together with our theorem, we have calculated the reliability poly-
nomial for the same strip with all edges replaced by a-fold multiple edges
joining the same vertices.

We have calculated the loci B in the Lx Q. limit for these strips. The
single point at p=4/3 where the locus B crosses the real p axis for the
sq[2×.] case, shown in Fig. 1, corresponds to a separate points for the
a-fold edge replication of sq[2×.]. These can be calculated using (4.41)
with (4.42), and we obtain

p=1−
1
31/a
e
ip(1+2k)
a , k=0, 1,..., a−1. (5.94)

For example, for a=2, this yields the two values p=1±i/`3, and so
forth for higher values of a. The arc endpoints can be calculated in the
same way.

It is also of interest to study strip graphs in which a certain subset of
the edges are replaced by a-fold replicated edges joining the same vertices.
A simple example of this is already provided by the Ly=2 strips of the
square lattice with cylindrical, torus, or Klein bottle boundary conditions,
which have double transverse edges. We have calculated the reliability
polynomials for the cyclic Ly=2 strips of the square lattice with a-fold
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multiple transverse edges. We denote these strip graphs as sq[2×m,
cyc, va]. We find

R(sq[Ly=2, m, cyc, va], p)

=p2m[(asqcyc2, va, 1)m+(asqcyc2, va, 2)m−2(asqcyc2, va, 3)m

+mp−1(1−p)a+1 {(asqcyc2, va, 1)m−1 (VL1(p, a)+VL2(p, a))

+(asqcyc2, va, 2)m−1 (VL1(p, a)−VL2(p, a))−(asqcyc2, va, 3)m−1}]
(5.95)

where

asqcyc2, va, j=(2p)−1 [2−p−(2−3p)(1−p)a

±[(1−(1−p)a)((2−p)2−(2−3p)2 (1−p)a)]1/2], j=1, 2
(5.96)

asqcyc2, va, 3=(1−p)a (5.97)

and

VL1(p, a)=
(1−p)a−1 (2p−1)+1

2p(1−p)a−1
(5.98)

VL2(p, a)=
(2p−1)(3p−2)(1−p)a−4+10p−7p2+ 2−p

(1−p)a−1

2p[(1−(1−p)a)((2−p)2−(2−3p)2 (1−p)a)]1/2
. (5.99)

In Figs. 11 and 12 we show the loci B in the limit Lx Q. for the cases
a=3, 4. In general, B contains arcs protruding inward from points on the
circle |p−1|=1 given by p=1− exp(2ipk/a) (cf. Eq. (4.47)) for 0 [ k [
a−1. If and only if a is even, then one of these points, namely the one cor-
responding to k=a/2, occurs at p=2, and the part of B that connects
with this point is a line segment on the real axis extending from p=2
downward to an a-dependent lower limit.

5.17. Ly=2 Free Strip of the sqd Lattice with Multiple Transverse

Edges

In this section we exhibit the first of several recursive families of lattice
strip graphs that we have found with the property that some zeros of their
reliability polynomials and, in the limit of infinite length, some portions of
their accumulation sets B, lie outside the disk |p−1|. This family is a one-
parameter family generalizing the lowest-order graph found by Royle and
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Fig. 11. Singular locus B for the Lx Q. limit of the Ly=2 strip of the square lattice with
a=3-fold multiple transverse edges. For comparison, zeros of the reliability polynomial are
shown for this strip with cyclic boundary conditions and Lx=20.

Sokal. That graph is constructed as follows: (19) start with the complete
graph K4 and choose two nonintersecting edges; replace each of these edges
by six edges in parallel, i.e., joining the same pair of vertices. (Here the
complete graph Kn is defined as the graph with n vertices such that every
vertex is connected by one edge to every other vertex.) We had previously
calculated Tutte and chromatic polynomials for strips composed of K4
subgraphs. (34, 50, 51) One of the equivalent ways of defining these strip graphs
is to start with a strip of the square lattice and add edges connecting
diagonally opposite vertices of each square, thereby replacing each square
by a K4; they were thus denoted strips of the sqd lattice, sqd(2×Lx, BCx),

0 0.5 1 1.5 2
Re(p)
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0

0.5
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Fig. 12. Singular locus B for the Lx Q. limit of the Ly=2 strip of the square lattice with
a=4-fold multiple transverse edges. For comparison, zeros of the reliability polynomial are
shown for this strip with cyclic boundary conditions and Lx=20.
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where BCx indicated the longitudinal boundary conditions. In a physical
context, the Potts model on the sqd lattice is equivalent to the Potts model
on the square lattice with next-nearest-neighbor spin–spin couplings. The
longitudinal (x) and transverse (y) directions on this strip are taken to be
horizontal and vertical, respectively. In particular, we consider a sqd strip
with width Ly=2 and arbitrary length Lx. We then replace each vertical
edge by six edges joining the same pair of vertices (leaving the horizontal
and diagonal edges unchanged). An elementary proof (50) shows that for
free longitudinal boundary conditions this is a planar graph. We calculate
the reliability polynomial and find for the numerator and denominator of
the generating function

N(p, z)=p[A0+A1z] (5.100)

where

A0=−(p−2)(p2−3p+3)(p2−p+1) (5.101)

A1=−p2(p−1)6 (3p−4) (5.102)

D(p, z)=1+b1z+b2z2 (5.103)

where

b1=−p2(6p8−52p7+200p6−448p5+644p4−616p3+391p2−156p+32)
(5.104)

b2=−2p5(p−2)(p−1)8. (5.105)

Using this exact calculation, one easily verifies that members of this family
have reliability polynomials with zeros outside the disk |p−1| [ 1. The
locus B for the infinite-length limit of this family is shown in Fig. 13. As is
evident, B consists of arcs, and the tips of two complex-conjugate arcs on
the upper and lower left end at the points

p=0.327752±0.747464i (5.106)

which have

|p−1|=1.005296. (5.107)

These arc endpoints and their locally neighboring sections of their arcs thus
lie outside of the disk |p−1| [ 1. Since B is the continuous accumulation
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Fig. 13. Singular locus B for the Lx Q. limit of the Ly=2 strip of the sqd lattice with
6-fold multiple transverse edges. For comparison, zeros of the reliability polynomial are
shown for this strip with free boundary conditions and Lx=21. Horizontal and vertical axes
are Re(p) and Im(p) with tick spacing 0.25, and the circle |p−1|=1 is shown with light dots.

set of the zeros of the reliability polynomial, it follows that as Lx Q.,
infinitely many zeros of the reliability polynomial lie outside this disk.
Interestingly, although the locus B does extend outside the disk |p−1| [ 1,
the amount by which it does so is quite small, as is evident from the posi-
tions of the arc endpoints given in Eq. (5.107). This property is also true of
the other recursive families that we have found with zeros of R(G, p) and
limiting loci B lying outside the disk |p−1| [ 1.

We have also calculated the reliability polynomial for the analogous
strip graphs with free longitudinal boundary conditions and with each
longitudinal, rather than transverse, edge replaced by 6 edges joining the
same pair of vertices. We find similar results. A plot of the zeros for Lx=9
is shown in Fig. 14. The arcs on B that extend outside the disk |p−1| [ 1
are again situated in the upper and lower left, and the endpoints of these
arcs that extend outside this disk are

p=0.4346475±0.8266808i (5.108)

with

|p−1|=1.001511. (5.109)
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Fig. 14. Zeros of the reliability polynomial for the Ly=2, Lx=9 strip of the sqd lattice with
6-fold multiple longitudinal edges and free boundary conditions. Horizontal and vertical axes
are Re(p) and Im(p) with tick spacing 0.25, and the circle |p−1|=1 is shown with light dots.

5.18. Ly=2 Free Strip of K4 Subgraphs with Multiple Edges

We consider the strip shown in Fig. 8 of the Appendix of ref. 50, but
with free, instead of cyclic, longitudinal boundary conditions. In the nota-
tion of that figure, we replace each of the edges (labelled as eij=(vi, vj))
(1,2), (2,3), etc. on the top; (4,5), (5,6), etc. on the bottom, and (1,7), (5,8),
(2,9), etc. in the middle with a 6-fold replicated edge. This is a family of
planar graphs (as is the family in ref. 50 with cyclic boundary conditions).
We calculate the reliability polynomial and find for the numerator and
denominator of the generating function

N(p, z)=p[A0+A1z] (5.110)

where

A0=1 (5.111)

A1=p2(p−1)(p−2)(p2−p+1)(p2−3p+3)

×(2p6−14p5+42p4−70p3+70p2−42p+13) (5.112)

D(p, z)=1+b1z+b2z2 (5.113)
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where

b1=p2(6p13−86p12+574p11−2366p10+6734p9−14014p8+22018p7

−26561p6+24731p5−17661p4+9471p3−3647p2+918p−118)
(5.114)

b2=p4(1−p)3 (4p22−100p21+1201p20−9224p19+50876p18−214544p17

+719020p16−1965184p15+4459758p14−8511200p13+13781747p12

−19045712p11+22536020p10−22849416p9+19815434p8

−14628596p7+9116492p6−4732392p5+2004288p4

−670184p3+167360p2−28048p+2401). (5.115)

Zeros of the reliability polynomial for the Lx=9 member of this family are
shown in Fig. 15. The tips of two complex-conjugate arcs, again on the
upper and lower left, extend outside the disk |p−1| [ 1, ending at the
points

p=0.4254334±0.8216255i (5.116)

Fig. 15. Zeros of the reliability polynomial for the Ly=2, Lx=9 free strip of K4 subgraphs
with 6-fold multiple longitudinal edges. Horizontal and vertical axes are Re(p) and Im(p)
with tick spacing 0.25, and the circle |p−1|=1 is shown with light dots.
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which have

|p−1|=1.002594. (5.117)

Thus, as Lx Q., an infinite number of zeros of the reliability polynomial
accumulate to form part of the locus B which extends outside the disk
|p−1| [ 1. As before, the amount by which some zeros and B lie outside
the disk is small.

6. COMPLETE GRAPHS

The complete graph Kn is the graph with n vertices such that every
vertex is connected by edges to every other vertex. The family of complete
graphs is not a recursive family, and provides a contrast to the recursive
families on which we have concentrated in this paper. The reliability poly-
nomial for Kn is (5)

R(Kn, p)=1− C
n−1

j=1

1n−1
j−1
2 (1−p) j(n−j) R(Kj, p). (6.1)

Since this family is not recursive, the reliability polynomial does not have
the form (4.2) and our usual methods for determining an asymptotic
accumulation set of zeros as the solution of the degeneracy in magnitudes
of dominant a terms do not apply. However, we have studied the zeros of
R(Kn, p) for a wide range of values of n, and we find that these zeros typi-
cally form an oval-shaped pattern that is concave to the left and is roughly
centered around p=1, somewhat similar to the exact results that we have
established for our recursive families of graphs without multiple edges. As
illustrations, we show in Fig. 16 the patterns of zeros for n=5, 10, and 15.
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Re(p)

-1
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0
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Fig. 16. Plot of zeros of the reliability polynomial R(Kn, p) for n= (a) 5 (j), (b) 10 (i),
(c) 15 (n).
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We observe that as n increases, the oval moves outward from p=1. Note
that since Kn is a D-regular graph with D=n−1, it follows that the vertex
degree DQ. as nQ.. This feature that DQ. as nQ. is thus shared in
common by the two families Kn and the thick links TLn. For the latter
family, it is elementary that as nQ., B is the circle |p−1|=1. However,
our results show that it is not necessary for any vertex degree to go to
infinity in order for a part of B to satisfy |p−1| \ 1. Our results for the
family of wheel graphs, GD(1×m) also show that the property that a vertex
degree goes to infinity as |V|Q. is not sufficient for B to have a part with
|p−1| \ 1.

7. DISCUSSION OF RESULTS

In this section we discuss some general features of our results.

• For a given type of lattice and a given width and choice of trans-
verse boundary conditions, we find that in the infinite-length limit, the
reliability per vertex r is the same for any choice of longitudinal boundary
conditions.

• On general grounds, one expects that the higher the connectivity,
and, equivalently for our present purposes, the higher the effective vertex
degree deff , the larger the value of r for a fixed p. In Fig. 17 we plot r for
some strips of the square, triangular, and honeycomb lattices. We see that
our expectation is confirmed by our exact results.

0

0.2

0.4

0.6

0.8

1

r

0.2 0.4 0.6 0.8 1

p

Fig. 17. Comparison of asymptotic reliability per vertex r for the Lx Q. limit of several
lattice strips. From bottom to top, the curves refer to (a) sq[1×., FBCy] with deff=2,
(b) hc[2×., FBCy] with deff=2.5, (c) sq[2×., FBCy] with deff=3, (d) sq[2×., PBCy]
with deff=4, (e) GD[1×.], same r as for tri[2×.], with deff=4, (f ) GD[2×.], with
deff=4.
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Table III. Properties of Reliability Polynomials and Resultant Loci B

Including pc or (pc)eff for Various Lattice Strip Graphs. The Notation

sqdl and D Refer to the Self-Dual Strips of the Square Lattice

Gs Ly BCy BCx deff Na pc

sq 1 F F 2 1 –
sq 1 F P 2 1 –
sq 2 F F 3 2 4/3
sq 2 F (T)P 3 3 4/3
sq 3 F F 10/3 4 1.335
sq 3 F (T)P 10/3 4 1.335

sq 2 P F 4 2 2
sq 2 P (T)P 4 3 2
sq 3 P F 4 3 1.402
sq 3 P (T)P 4 11 1.402
sq 4 P F 4 6 1.384

sqdl 1 D F 4 2 3/2
sqdl 1 D P 4 3 3/2
sqdl 2 D F 4 5 1.4
sqdl 2 D P 4 10 1.4
sqdl 3 D F 4 14 1.386
sqdl 3 D P 4 35 1.386

tri 2 F F 4 2 3/2
tri 2 F (T)P 4 3 3/2
hc 2 F F 5/2 2 6/5
hc 2 F (T)P 5/2 3 6/5

• Closely related to this, our results exhibit the property that the
derivative dr/dp at p=0 is an increasing function of deff . Except for the
Ly=1 strips of the square lattice, i.e., the line and circuit graphs, we find
that dr/dp=0 at p=1 for all strips that we have studied. In Table III we
list some of the properties that we have found from our calculations.

• We can also comment on features of the zeros of the reliability
polynomials and their continuous accumulation sets B. We find that the
zeros of the reliability polynomials for many strips studied do exhibit the
property that |p−1| [ 1, as do their loci B in the limit of infinite length.
However, motivated by ref. 19, we have calculated reliability polynomials
for strips such that the zeros of R(G, p) violate the bound |p−1| [ 1 and
such that, in the limit of infinite length, the continuous accumulation sets
of zeros B extend outside of the disk |p−1| [ 1. An intriguing result is that
the amounts by which some individual zeros, and the outer part of the
loci B, lie outside this disk are small.
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• We find that in some cases, B crosses the real axis and hence defines
a pc, but in other cases, it does not. However, typically, even for families
for which B does not cross the real axis, there are arc endpoints on B that
lie close to this axis, thereby enabling one to define a (pc)eff via extrapola-
tion or just as the real part of the nearby endpoints. Our results have the
property that these values of pc or (pc)eff lie in the interval p ¥ (1, 2]. It is
interesting to discuss the relation between this result and the Brown–
Colbourn theorem (15) that R(G, p) does not have any real zeros in the
region outside of the set 0 2 (1, 2]. In general, the property that a poly-
nomial has no zeros in an interval of the real axis does not exclude the
possibility that as the degree of this polynomial goes to infinity, a resultant
continuous accumulation set of zeros B crosses the real axis in this interval.
A well-known case where this phenomenon does occur is provided by the
Potts model partition function. This is a polynomial in q and a=eK with
non-negative coefficients. Thus, for fixed positive q, for either sign of the
spin–spin coupling J, this partition function cannot have any zeros on the
positive real a axis. However, for the infinite limit of the square lattice,
the locus B in this case does cross the positive real a axis at the point
ac=1+`q, which serves as the phase boundary between the paramagnetic
and ferromagnetic phases occupying the respective intervals 1 [ a [ ac and
ac [ a [..

• For all of the lattice strip graphs for which we have calculated
R(G, p) and B, we find that B is independent of the longitudinal boundary
conditions, although it depends on the transverse boundary conditions and
the type of lattice. This requires that the dominant a in the case of cyclic
strips must arise from the subset of the a’s with coefficient c (0) that coinci-
des with the set of a’s for the corresponding strip with free longitudinal
boundary conditions. The property that, for a given type of lattice strip,
the locus B is independent of the longitudinal boundary conditions is quite
different from what we found for the corresponding continuous accumula-
tion sets of zeros of chromatic polynomials of lattice strips, (30, 42–50) which
do depend on both longitudinal and transverse boundary conditions.

• For all of the lattice strip graphs for which we have calculated
R(G, p) and B, we find that this locus consists of arcs (and in some cases a
line segment) and does not enclose regions in the complex p plane. In some
simple cases B is connected, but in general, it may consist of several
disjoint components. Again, this is quite different from what we found for
the loci B for chromatic polynomials of lattice strips; for those, a sufficient
(not necessary) condition that this locus encloses areas is that the strip has
periodic longitudinal boundary conditions. (30, 42, 46)
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• In all of the cases for which we have calculated exact results, when-
ever B consists of an arc of a circle, then this circle is centered at p=1.
More generally, even if B is not an arc of a circle, it is roughly centered
around p=1. For families without multiple edges, we find that the com-
ponent(s) of B is (are) roughly concave toward the left.

• The width Ly Q. limit of loci B for the infinite-length lattice strips
is not necessarily the same as the continuous accumulation locus of the
zeros of the reliability polynomial for the two-dimensional thermodynamic
limit Lx Q., Ly Q. with Ly/Lx fixed to a finite nonzero constant. This
is clear since for any finite Ly regardless of how large, the infinite-length
strip is a quasi-one-dimensional system, characterized by the ratio Ly/Lx
=0. Thus, for example, the Potts model on these strips has a paramagnetic-
ferromagnetic (PM-FM) phase transition point only at K=., i.e., v=.,
while for 2D lattices, it has such a PM-FM phase transition point at
finite v. However, in our previous studies of continuous accumulation sets
of loci of Potts model partition functions (e.g., refs. 28–37 and our earlier
work referred to therein on complex-temperature phase diagrams for Ising
models) we have found that it is possible to gain some insight into certain
features of the continuous accumulation set of zeros of the Potts model for
the two-dimensional thermodynamic limit from studies of wider and wider
infinite-length strips.

In this context, we note that for the (infinite) square lattice, the
PM-FM phase transition point for the Potts model is given by v2=q. (39)

This transition point is reflected in a nonanalyticity in the free energy of the
Potts model at the corresponding temperature variable v. As we have
discussed and studied in earlier papers, e.g., refs. 52 and 53, when one
generalizes v to complex values, one sees that a singular point for a real
physical value of v, such as the PM-FM transition point, is associated with
the fact that a complex-temperature phase boundary crosses the real
physical v axis at this point. At the crossing points there are physical or
complex-temperature singularities in the free energy. (52–56) The boundaries
on B (here as a function of v for fixed q, but more generally, also as
a function of q for fixed v) arise as the continuous accumulation set of
the complex-temperature zeros of the partition function, analogous to the
origin of the locus B studied here as continuous accumulation set of the
zeros of the reliability polynomial. Connected with this, the physical
paramagnetic, ferromagnetic, and antiferromagnetic (AFM) phases have
complex-temperature extensions, and these are separated from each other
by the phase boundaries B in the v plane. We recall that for the Potts
model on the square lattice, the PM and FM phases occupy the intervals
0 [ v [`q and `q [ v [., respectively. Analytically continuing q to real
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values, using Eq. (3.6), we infer that in the limit qQ 0 that yields the relia-
bility polynomial, as given by Eq. (3.11), the PM phase therefore contracts
to a point at v=0, which corresponds, via the relation p=v/(1+v) in
Eq. (3.12), to the point p=0, while the FM phase expands to occupy the
interval 0 [ v [., corresponding to the interval 0 [ p [ 1. As is evident,
e.g., in the square-lattice Ising model and more generally for the 2D q-state
Potts model, the complex-temperature extension of the FM phase includes
part of the negative real v axis extending to v=−. (as well as the outer-
lying region |v|Q. in the v plane). This semi-infinite interval of large
negative real values of v is mapped, via the transformation p=v/(1+v),
to a finite interval of values of p \ 1. Points in the outer region v=Re ih

with R± 1 are mapped via this transformation to points in the vicinity
of p=1, namely p 4 1−R−1e−ih. Since (in the case qQ 0 relevant here)
all of the points mentioned above in the v plane, namely (i) the interval
0 [ v [., (ii) the interval of large negative real v, and (iii) the semi-infinite
annular region v=Re ih with RQ. are in the complex-temperature exten-
sion of the FM phase of the Potts model, it follows that the images of these
sets of points are all in the same analytically connected region of the p
plane as defined by the locus B. We can draw on another source of infor-
mation about this boundary as follows. Arguments have been given that
for the Potts model on the (infinite) square lattice, the paramagnetic-anti-
ferromagnetic (PM-AFM) transition occurs at a (physical) root of the
equation v(v+4)+q=0. (58) Setting q=0 and v=p/(1−p) as in (3.11) and
(3.12), one finds the solutions v=0 and v=−4, corresponding respectively
to p=0, the solution already found above, and p=4/3. Hence for the
square lattice, the image, under the mapping vQ p=v/(1+v), of the
complex-temperature extension of the FM phase includes the real interval
0 [ p [ 4/3. The complementary intervals −. [ p [ 0 and 4/3 [ p [.
would be part of the image under this map of an unphysical phase denoted
the ‘‘O’’ (for ‘‘other’’) phase in ref. 52 and our subsequent papers on
complex-temperature phase diagrams. Using the fact that the complex-
temperature phase boundary separates these various phases, we infer that
for the reliability polynomial on the square lattice, in the thermodynamic
limit, the zeros accumulate on a locus B that is a closed curve crossing the
real axis at p=0 and p=4/3 and separating the interior region from the
exterior, which latter includes the intervals −. [ p [ 0 and 4/3 [ p [..
In an obvious nomenclature extending that of ref. 52, we denote the
regions in the interior and exterior of this closed curve as RFM and RO,
indicating the correspondence with the complex-temperature phases of the
Potts model. Just as the free energy is an analytic function in the interior of
a complex-temperature phase, the function r that we have introduced in
ref. 14 and here in Eq. (1.3) is an analytic function in the regions bounded
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by the locus B. One expects qualitatively similar results to hold for the
regions of analyticity of r on (the thermodynamic limits of ) lattice graphs
of dimensionality d \ 3. For the (infinite) square lattice,

pc(sq)=
4
3 . (7.1)

We shall discuss how this compares with our exact results for pc values on
infinite-length finite-width strips below.

Similar reasoning can be applied to obtain inferences for the loci B

and the corresponding region diagrams of analyticity of the function r on
other (infinite) 2D lattices. For the triangular and honeycomb lattices, the
PM-FM phase transition point is given by a (physical) root of the equa-
tions v2(v+3)−q=0 and v3−3qv−q2=0, respectively. (60) Evaluating these
for q=0 and v=p/(1−p) yields for the triangular lattice, the solutions
p=0 and p=3/2, so that

pc(tri)=
3
2 . (7.2)

For the honeycomb lattice, the same evaluation yields just the solution
p=0 and hence does not determine pc(hc) (By the reasoning given above,
one can infer that pc(hc) > 1). The fact that the point p=0 on B is
common to all of the three lattices—square, triangular, and honeycomb—
follows because it is the image under the map (3.12) of the point v=K=0.
This point corresponds to infinite temperature, where, as one can see from
Eqs. (3.3) and (3.4), the spin–spin interaction does not contribute to
Z(G, q, v), which reduces to q |V| for all of these lattices (indeed for any
graph G).

• For a given type of lattice strip (square, triangular, honeycomb, etc.)
and a given set of transverse boundary conditions, we may consider the
sequence of loci B for each width, Ly, and inquire whether these approach
a limiting locus as Ly Q.. Our results are summarized in Table III and
are consistent with the hypothesis that such a limiting locus exists. As part
of this analysis, we have investigated, for each type of strip family, how pc
or (pc)eff depends on Ly. We find that, for a given type of lattice strip and
transverse boundary conditions, if a value of pc exists, i.e., if B crosses
(intersects) the real axis, then pc decreases as Ly increases. However, if, for
a given type of lattice strip and transverse boundary conditions, one con-
siders the set of values of both pc and (pc)eff (the latter for widths where B

comes close to but does not cross the real axis), then the dependence on Ly
does not appear to be monotonic. For example, for the infinite-length limit
of the strip of the square lattice with free transverse boundary conditions
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(and any longitudinal boundary conditions), for the width Ly=2, we have
shown that pc=4/3. Interestingly, this is the same value as inferred above
for the infinite square lattice defined via the usual thermodynamic limit.
For the square-lattice strip with width Ly=3, the locus B does not cross
the real axis, but, as is evident in Fig. 2, the inner endpoints of the arcs on
B are sufficiently close to the real axis that one can infer a (pc)eff , and it is
(pc)eff 4 1.335, which is slightly greater than the value of pc for the Ly=2
strip and the inferred value of pc(sq). As is evident in Table III, the values
of pc are not as close to pc(sq) for the square-lattice strips of the corre-
sponding widths with periodic transverse boundary conditions or self-dual
boundary conditions, as compared with free transverse boundary condi-
tions, although they are again consistent with approaching pc(sq)=4/3 as
the width increases. For the Ly=2 strip of the triangular lattice, we find
the exact result pc=3/2. Again, interestingly, this is equal to the inferred
value of pc(tri) for the infinite triangular lattice defined via the thermo-
dynamic limit. We have encountered this sort of situation before. For
example, for the chromatic polynomial P(G, q)=Z(G, q, v=−1) and its
asymptotic limiting function as |V|Q., W({G}, q) (the degeneracy per
vertex for the Potts model), we found that for the infinite-length strip
of the triangular lattice with width Ly=3 and toroidal or Klein-bottle
boundary conditions, qc (defined as the maximal point where the continu-
ous accumulation set of zeros of P(G, q) intersects the real q axis) is
qc=4, (49) the same value as for the infinite triangular lattice. Similarly, for
infinite-length limits of self-dual strips of the square lattice, we found
qc=3, (36, 37) the same value as for the infinite square lattice.

As regards the behavior of B near p=0, our results are also consistent
with the possibility that for each type of lattice, as the strip width Ly Q.,
the respective loci B have, on the left, complex-conjugate arc endpoints
that come together and join at p=0, as motivated by the discussion above
for the infinite 2D lattices. The observed feature that this occurs only as a
limit, in contrast to the crossing on the right at the respective values of pc,
can be understood via the relation (3.11) and the aforementioned fact that
the infinite-length finite-width strips are quasi-1D systems as far as their
thermodynamic behavior is concerned. Since, as we are noted above, the
interior of B for the reliability polynomial on the 2D lattice corresponds to
the image of the complex-temperature extension of the FM phase of the 2D
Potts model (for qQ 0), and since the argument that this must be separated
from other phases relies on the existence of nonzero ferromagnetic long
range order (magnetization), it follows that for quasi-1D systems, where for
a short-range interaction like that in (3.4), the standard Peierls argument
shows that there is no long range order, there is no FM phase. This yields a
plausible explanation of the features that we observe in our exact solutions
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for the infinite-length, finite-width strip graphs, that the loci B do not
enclose regions in the p plane.

8. CONCLUSIONS

In this paper we have presented exact calculations of reliability poly-
nomials R(G, p) for lattice strips G of fixed width and arbitrarily great
length with various boundary conditions. We have introduced the notion
of a reliability per vertex, r({G}, p) and have calculated this exactly for the
infinite-length limits of various lattice strip graphs. We have also studied
the zeros of R(G, p) in the complex p plane and determine exactly the
asymptotic accumulation set of these zeros B, across which r({G}) is
nonanalytic. We have observed and discussed several general features of
the r functions and the loci B for these families of graphs.
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